View Factors

Bob Cochran Applied Computational Heat Transfer Seattle, WA rjc@heattransfer.org

Version 0.2.x, April 19, 2016 Working Draft Processed Using $\[Mathbb{MTE}X2_{\varepsilon}\]$

April 19, 2016

Introduction

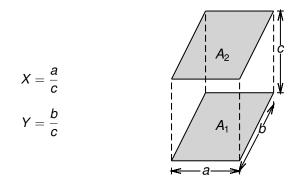
This document provides a summary of the Octave/MATLAB routines that have been implemented for calculation of view factors for a variety of geometries.

These functions can be used to evaluate view factors for input to TNSolver using the Radiation Enclosure command block.

View Factor Properties

Summation Rule (Equation (13.4), page 830 in [BLID11]):

$$\sum_{i=1}^{N} F_{ij} = 1$$

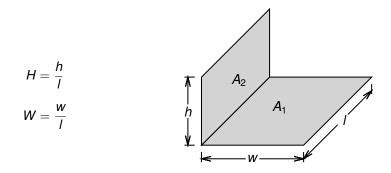

Reciprocity Rule (Equation (13.3), page 829 in [BLID11]):

$$A_i F_{ij} = A_j F_{ji}$$

Addition of View Factors for Subdivided Surfaces (Equation (13.5), page 833 and Figure 13.7, page 835 in [BLID11]):

$$F_{i(j)} = \sum_{k=1}^{N} F_{ik}$$

View Factor for Coaxial Parallel Plates

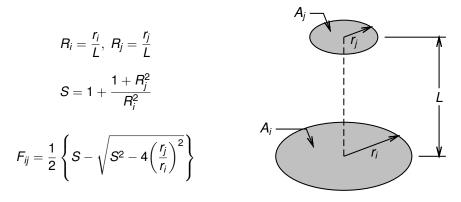

See Table 13.2, page 833 in [BLID11] or Table 10.3, page 546 in [LL12] Also see the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-11: Identical, parallel, directly opposed rectangles.

View Factor for Coaxial Parallel Plates (continued)

$$F_{1-2} = \frac{2}{\pi XY} \left\{ \ln \left[\frac{(1+X^2)(1+Y^2)}{1+X^2+Y^2} \right]^{1/2} + X\sqrt{1+Y^2} \tan^{-1} \frac{X}{\sqrt{1+Y^2}} + Y\sqrt{1+X^2} \tan^{-1} \frac{Y}{\sqrt{1+X^2}} - X \tan^{-1} X - Y \tan^{-1} Y \right\}$$

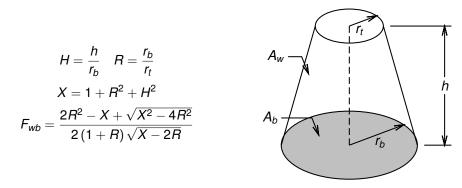
(日) < (문) < 문) < 문) 된 = (의 Q)
 (5/13)

View Factor for Orthogonal Plate to Plate



See Table 13.2, page 833 in [BLID11] or Table 10.3, page 546 in [LL12] Also see the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-14: Two finite rectangles of same length, having one common edge, and at an angle of 90° to each other.

View Factor for Orthogonal Plate to Plate (continued)


$$F_{1-2} = \frac{1}{\pi W} \left\{ W \tan^{-1} \frac{1}{W} + H \tan^{-1} \frac{1}{H} - \sqrt{H^2 + W^2} \tan^{-1} \sqrt{\frac{1}{H^2 + W^2}} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+H^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+H^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+H^2)(1+H^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+W^2)(1+H^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+W^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+W^2)(1+W^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+W^2)(1+W^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)(1+W^2)}{1+W^2 + H^2} + \frac{1}{4} \ln \left(\frac{(1+W^2)$$

View Factor for Coaxial Parallel Disks

See Table 13.2, page 833 in [BLID11] or Table 10.3, page 546 in [LL12] Also see the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-41: Disk to parallel coaxial disk of unequal radius.

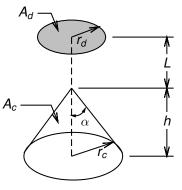
View Factor for Conical Frustum Wall to its Base

See the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-112: Interior of frustum of right circular cone to base.

View Factor for Disk to Coaxial Cone

$$\alpha = \tan^{-1} \frac{r_c}{h}$$

$$S = \frac{r_d}{L} \quad R = \frac{r_c}{r_d} \quad X = S + R \cot \alpha$$


$$A = \sqrt{X^2 + (1+R)^2}$$

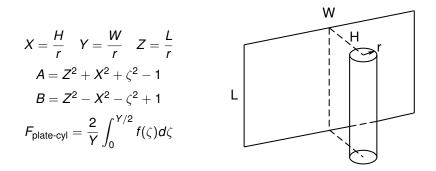
$$B = \sqrt{X^2 + (1-R)^2}$$

$$C = \sqrt{\cos \alpha + S \sin \alpha}$$

$$D = \sqrt{\cos \alpha - S \sin \alpha}$$

$$E = R \cot \alpha - S$$

See the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-48: Disk to coaxial cone.


View Factor for Disk to Coaxial Cone (continued)

For
$$\alpha \ge \tan^{-1} \frac{1}{S}$$
:

$$F_{dc} = \frac{1}{2} \left\{ R^2 + X^2 + 1 - \sqrt{(1 + R^2 + X^2)^2 - 4R^2} \right\}$$
For $\alpha < \tan^{-1} \frac{1}{S}$:

$$F_{dc} = \frac{1}{\pi} \left\{ -AB\tan^{-1}\frac{AC}{BD} + \left(1 + S^2\right)\tan^{-1}\frac{C}{D} + \frac{\sin\alpha}{\cos^2\alpha} \left[XE\tan^{-1}\frac{CD}{X} + S^2\tan^{-1}\frac{CD}{S} + (CD)^2 \left(\tan^{-1}\frac{X}{CD} - \tan^{-1}\frac{S}{CD}\right) \right] + \left[\frac{R(X+S)}{\sin 2\alpha} - SR\tan\alpha \right] \cos^{-1}\left(-S\tan\alpha\right) \right\}$$

View Factor for Plate to Cylinder

See [SC78] and the web site: A Catalog of Radiation Heat Transfer Configuration Factors, by John R. Howell, specifically C-74: Finite-length cylinder to rectangle with two edges parallel to cylinder axis and of length equal to cylinder.

View Factor for Plate to Cylinder (continued)

$$f(\xi) = \frac{X}{X^2 + \xi^2} - \frac{X}{\pi (X^2 + \xi^2)} \\ \times \left\{ \cos^{-1} \frac{B}{A} - \frac{1}{2Z} \left[\sqrt{A^2 + 4Z^2} \cos^{-1} \left(\frac{B}{A\sqrt{X^2 + \xi^2}} \right) + B \sin^{-1} \left(\frac{1}{\sqrt{X^2 + \xi^2}} \right) - \frac{\pi A}{2} \right] \right\}$$

<ロ> < (日) < (13/13)</p>

References I

[BLID11] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt. Introduction to Heat Transfer. John Wiley & Sons, New York, sixth edition, 2011.
[LL12] J. H. Lienhard, IV and J. H. Lienhard, V. A Heat Transfer Textbook. Phlogiston Press, Cambridge, Massachusetts, fourth edition, 2012. Available at: http://ahtt.mit.edu.

[SC78] E. M. Sparrow and R. D. Cess. *Radiation Heat Transfer.* McGraw-Hill, New York, augmented edition, 1978.