Lumped Mass Heat Transfer Experiment
Thermal Network Solution with TNSolver

Bob Cochran
Applied Computational Heat Transfer
Seattle, WA
TNSolver@heattransfer.org

ME 331 Introduction to Heat Transfer
University of Washington
October 4, 2016
Outline

- Heat Transfer Analysis
- Math Model
- The Thermal Network Solver: TNSolver
- Lumped Mass Heat Transfer Experiment
Heat Transfer in Industry
Math Model

Automotive

Electronics Packaging

Aircraft

Aerospace
Heat Transfer Analysis

Math Model

Answering design questions about thermal energy and temperature

- Hand calculation - back-of-the-envelope
 - On the order of 1-10 equations
- Spreadsheet style
 - LibreOffice Calc, Microsoft Excel, MathCAD
- Thermal network or lumped parameter approach
 - On the order of 10-1,000 equations
- Continuum approach - solid model/mesh generation
 - On the order of 1,000-1,000,000 equations
 - Finite Volume Method (FVM)
 - Finite Element Method (FEM)
Commercial Thermal Network Solvers
Math Model

- C&R Technologies
 - SINDA/FLUINT, Thermal Desktop, RadCAD
- MSC Software
 - Sinda, SindaRad, Patran
- ESATAN-TMS
 - Thermal, Radiative, CADbench
The Control Volume Concept
Math Model

\[\sum \text{Energy In} - \sum \text{Energy Out} = \text{Energy Stored, Generated and/or Consumed} \]

Heat (transfer) is thermal energy transfer due to a temperature difference
The Biot number, Bi, is:

$$Bi = \frac{hL_c}{k} < 0.1$$

$\text{L}_c = \frac{\text{volume}}{\text{surface area}} = \frac{V}{A}$

where the characteristic length, L_c, is:

- **Brick**: $\frac{HWL}{2(HW+LH+WL)}$
- **Cylinder**: $\frac{\pi r^2 L}{2\pi r^2 + 2\pi rL} = \frac{DL}{2(D+2L)}$
- **Sphere**: $\frac{(4/3)\pi r^3}{4\pi r^2} = \frac{D}{6}$
Convection Correlations
Math Model

The heat flow rate is:

\[Q = hA(T_s - T_\infty) \]

where \(h \) is the heat transfer coefficient, \(T_s \) is the surface temperature and \(T_\infty \) is the fluid temperature. Correlations in terms of the Nusselt number are often used to determine \(h \):

\[Nu = \frac{hL_c}{k} \quad h = \frac{kNu}{L_c} \]

where \(L_c \) is a characteristic length associated with the fluid flow geometry.
Radiation exchange between a surface and *large* surroundings
The heat flow rate is (Equation (1.32), p. 32 in [LL16]):

\[Q = \sigma \varepsilon_s A_s (T_s^4 - T_{sur}^4) \]

where \(\sigma \) is the Stefan-Boltzmann constant, \(\varepsilon_s \) is the surface emissivity and \(A_s \) is the area of the surface.
Note that the surface area, \(A_s \), must be *much* smaller than the surrounding surface area, \(A_{sur} \):

\[A_s \ll A_{sur} \]

Note that the temperatures must be the absolute temperature, \(K \) or °\(R \)
Define the radiation heat transfer coefficient, h_r (see Equation (2.29), page 74 in [LL16]):

$$h_r = \varepsilon \sigma (T_s + T_{sur})(T_s^2 + T_{sur}^2)$$

Then,

$$Q = h_r A_s (T_s - T_{sur})$$

Note:

- h_r is temperature dependent
- h_r can be used to compare the radiation to the convection heat transfer from a surface, h (if T_{sur} and T_∞ have similar values)
Range of Radiation Heat Transfer Coefficient

Math Model

\[T = T_s - T_1 \] (C)

\[h_r (W/m^2-K) \]

Radiation Heat Transfer Coefficient, \(h_r \), for \(T_1 = 25 \) C

\(\Delta T = T_s - T_\infty \) (C)
Introducing TNSolver

TNSolver User Guide

- Thermal Network Solver - TNSolver
- MATLAB/Octave program
 - GNU Octave is an open source clone of MATLAB
- Thermal model is described in a text input file
 - Do not use a word processor, use a text editor, such as:
 - Cross-platform: vim/gvim, emacs, Bluefish, among many others
 - Windows: notepad, Notepad++
 - MacOS: TextEdit, Smultron
 - Linux: see cross-platform options
- Simulation results are both returned from the function and written to text output files for post-processing
Thermal Network Terminology

TNSolver User Guide

- **Time dependency**
 - Steady state or transient
 - Initial condition is required for transient

- **Geometry**
 - Control Volume - volume, \(V = \int_V dV \)
 - Node: ●, \(T_{\text{node}} = \int_V T(x_i) dV \), finite volume
 - Control Volume Surface - area, \(A = \int_A dA \)
 - Surface Node: ○, \(T_{\text{surface node}} = \int_A T(x_i) dA \), zero volume

- **Material properties**

- **Conductors**
 - Conduction
 - Convection
 - Radiation

- **Boundary conditions**
 - Boundary node: ▲

- **Sources/sinks**
! Simple Wall Model

Begin Solution Parameters
 type = steady
End Solution Parameters

Begin Conductors
 wall conduction in out 2.3 1.2 1.0 ! k L A
 fluid convection out Tinf 2.3 1.0 ! h A
End Conductors

Begin Boundary Conditions
 fixed_T 21.0 in ! Inner wall T
 fixed_T 5.0 Tinf ! Fluid T
End Boundary Conditions

! begins a comment (MATLAB uses %)
What do we need in the input file for the lumped mass heat transfer experiment?

- Transient convection problem, with surface radiation
- Lumped capacitance approximation, $Bi < 0.1$, so no conduction in the solid object
Begin Solution Parameters

 title = Lumped Mass Heat Transfer Experiment
 type = transient
 begin time = (R)
 end time = (R)
 time step = (R)
 number of time steps = (I)

End Solution Parameters

(R) is a single real number
(I) is a single integer number
Define nodes which have a volume

Begin Nodes

! label rho*c V
(S) (R) (R)

End Nodes

(S) is a single character string
\[Q_{ij} = hA(T_s - T_\infty) \]

The heat transfer coefficient \(h \) is known.

```
Begin Conductors

! label  type  nd_i  nd_j  parameters
   (S)  convection (S)  (S)  (R)  (R)  ! h, A

End Conductors
```
External Forced Convection (EFC) Conductor
TNSolver Input File

\[Q_{ij} = hA(T_s - T_\infty) \]

Heat transfer coefficient, \(h \), is evaluated using the correlation for external forced convection from a sphere with diameter \(D \) and fluid velocity of \(u \).

Begin Conductors

! Ts Tinf
! label type nd_i nd_j parameters
(S) EFCsphere (S) (S) (S) (R) (R) ! material, u, D

End Conductors

Note that Re, Nu and h are reported in the output file.
External Natural Convection (ENC) Conductor
TNSolver Input File

\[Q_{ij} = hA(T_s - T_\infty) \]

Heat transfer coefficient, \(h \), is evaluated using the correlation for external natural convection from a sphere with diameter \(D \).

```
Begin Conductors
! Ts  Tinf
! label  type nd_i nd_j parameters
   (S) ENCsphere  (S) (S) (S) (R) ! material, D

End Conductors
```

Note that Ra, Nu and \(h \) are reported in the output file.
\[Q_{ij} = \sigma \epsilon A_s (T_s^4 - T_{env}^4) \]

\(\sigma \) is the Stefan-Boltzmann constant and \(\epsilon \) is the surface emissivity.

```
Begin Conductors

! label type nd_i nd_j parameters
(S) surfrad (S) (S) (R) (R) ! emissivity, A

End Conductors
```

Note that \(h_r \) is reported in the output file.
Specify a fixed temperature boundary condition, \(T_b \), to one or more nodes in the model.

```
Begin Boundary Conditions

! type Tb Node(s)
fixed_T (R) (S ...) 

End Boundary Conditions
```

(S ...) one or more character strings
Specify the initial temperatures, T_0, to the nodes in the model.

```
Begin Initial Conditions

! T0 Node(s)
 (R) (S ...)  

End Initial Conditions
```
Begin Solution Parameters
 title = Lumped Capacitance Experiment - Object A
 type = transient
 begin time = 0.0
 end time = 341.5
 time step = 0.5
 ! number of time steps = 20
End Solution Parameters

Begin Nodes
 1 3925000.0 6.2892e-05 ! rho*c, V
End Nodes

Begin Conductors
 conv convection 1 Tinf 12.0 0.0076 ! h, A
 ! conv EFCsphere 1 Tinf air 13.13 0.04934 ! material, u, D
 ! conv ENCsphere 1 Tinf air 0.04934 ! material, D
 rad surfrad 1 Tinf 0.95 0.0076 ! emissivity, A
End Conductors
Begin Boundary Conditions
 fixed_T 25.0 Tinf
End Boundary Conditions

Begin Initial Conditions
 99.0 1 ! Ti, node
End Initial Conditions
Verification using Analytical Solution

TNSolver Verification

Backward Euler time integration is used in TNSolver. How does time step affect accuracy?
Utilize the analytical solution Equation (1.22), p. 22 in [LL16]:

\[
\frac{T - T_\infty}{T_i - T_\infty} = \exp \left[- \left(\frac{hA}{\rho cV} \right) t \right]
\]

This is provided in the MATLAB function `lumpedmass.m`:

\[
[T, Bi] = \text{lumpedmass}(\text{time}, \text{rho}, \text{c}, \text{V}, \text{h}, \text{A}, \text{Ti}, \text{Tinf}, \text{k})
\]

Example calculation using:
\[D = 0.04931 \ m, \ T_i = 100 \ C, \ T_\infty = 25 \ C\]
\[\rho = 7850 \ kg/m^3, \ c = 500 \ J/kg \cdot K\]
\[h = 25.0 \ W/m^2 \cdot K, \ k = 62.0 \ W/m \cdot K\]
Verification using Analytical Solution

TNSolver Verification

% error: $100 \times \frac{T - T_{ex}}{T_{ex}}$

t = 180 (s)
t = 90 (s)
t = 45 (s)
t = 22.5 (s)
t = 11.25 (s)
t = 1 (s)
Experiment Data Analysis with TNSolver

Data Analysis

Three MATLAB functions are provided for a least-squares analysis using TNSolver. Recommend placing the experimental data into a MATLAB .mat file using `save` in order to load the experimental specimen temperature `expT`.

1. Estimate convection heat transfer coefficient, h, for the natural convection data using `ls_lumped_h.m`
2. Estimate velocity, u, for the forced convection data using `ls_lumped_vel.m`
3. Estimate surface emissivity, ϵ, using `ls_lumped_emiss.m`
Estimate h

Results

Example for object A, natural convection input file ANC.inp

1. Set begin and end time to match experimental data range
2. Set the time step to match experimental data sample rate
3. Set material properties and object geometries in input file
4. Set the boundary and initial conditions to match experiment
5. Use the convection conductor

```matlab
>> load NC_A
>> h = linspace(10,35,10);
>> [besth] = ls_lumped_h('ANC', expT, h)
```
Estimate h Results and Plot

Results

Best Fit $h = 23.8889$
Example for object A, forced convection input file AFC.inp

1. Set begin and end time to match experimental data range
2. Set the time step to match experimental data sample rate
3. Set material properties and object geometries in input file
4. Set the boundary and initial conditions to match experiment
5. Use the EFCsphere convection conductor

```matlab
>> load FC_A
>> u = linspace(10,20,10);
>> [bestvel] = ls_lumped_vel('AFC', expT, u)
```
Estimate Velocity Results and Plot

Results

Best Fit Velocity = 13.3333
Estimate Emissivity

Results

Example for object A, forced convection input file AFC.inp

1. Set begin and end time to match experimental data range
2. Set the time step to match experimental data sample rate
3. Set material properties and object geometries in input file
4. Set the boundary and initial conditions to match experiment
5. Use the EFCsphere convection conductor and the estimated velocity from the previous analysis

```
>> load FC_A
>> eps = linspace(.8,1,10);
>> [beste] = ls_lumped_emiss('AFC', expT, eps)
```
Estimate Emissivity Results and Plot

Results

Best Fit $\theta = 0.95556$
Conclusion

- Math model for lumped capacitance method
- TNSolver input file described
- TNSolver thermal network model verification with analytical solution demonstrated
- Lumped Mass Experiment data analysis

Questions?
Appendix
Obtaining GNU Octave

GNU Octave

- GNU Octave
 - http://www.gnu.org/software/octave/
- Octave Wiki
 - http://wiki.octave.org
- Octave-Forge Packages (similar to MATLAB Toolbox packages)
- Windows Installation
 - Binaries are at: https://ftp.gnu.org/gnu/octave/windows/
 - As of August 1, 2016, the latest version of Octave is 4.0.3
 - Download the octave-4.0.3.zip file and unzip in a Windows folder
External Forced Convection over a Sphere

Math Model

Equation (7.48), p. 444, in [BLID11]

\[
\overline{Nu_D} = 2 + \left(0.4 \text{Re}_D^{1/2} + 0.06 \text{Re}_D^{2/3} \right) \text{Pr}^{0.4} \left(\frac{\mu}{\mu_s} \right)^{1/4}
\]

where \(D \) is the diameter of the sphere and the Reynolds number, \(\text{Re}_D \), is:

\[
\text{Re}_D = \frac{\rho u D}{\mu} = \frac{u D}{\nu}
\]

Note that the fluid properties are evaluated at the fluid temperature, \(T_\infty \), except the viscosity, \(\mu_s \), evaluated at the surface temperature, \(T_s \).
External Natural Convection over a Sphere

Math Model

Equation (9.35), page 585 in [BLID11]

\[\overline{Nu}_D = 2 + \frac{0.589 Ra_D^{1/4}}{1 + (0.469/Pr)^{9/16}}^{4/9} \]

where \(D \) is the diameter of the sphere and the Rayleigh number, \(Ra_D \), is:

\[Ra_D = GrPr = \frac{g \rho^2 c \beta D^3 (T_s - T_\infty)}{k \mu} = \frac{g \beta D^3 (T_s - T_\infty)}{\nu \alpha} \]

Note that the fluid properties are evaluated at the film temperature, \(T_f \):

\[T_f = \frac{T_s + T_\infty}{2} \]
References

Introduction to Heat Transfer.

A Heat Transfer Textbook.
Available at: http://ahtt.mit.edu.