Lumped Mass Heat Transfer Experiment Thermal Network Solution with TNSolver

Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org

ME 331 Introduction to Heat Transfer University of Washington October 4, 2016

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Outline

- Heat Transfer Analysis
- Math Model
- The Thermal Network Solver: TNSolver
- Lumped Mass Heat Transfer Experiment

Heat Transfer in Industry

Math Model

Automotive

Electronics Packaging

Aerospace

୬ < ୯ 3/40

Heat Transfer Analysis

Math Model

Answering design questions about thermal energy and temperature

- Hand calculation back-of-the-envelope
 - On the order of 1-10 equations
- Spreadsheet style
 - LibreOffice Calc, Microsoft Excel, MathCAD
- Thermal network or lumped parameter approach
 - On the order of 10-1,000 equations
- Continuum approach solid model/mesh generation
 - On the order of 1,000-1,000,000 equations
 - Finite Volume Method (FVM)
 - Finite Element Method (FEM)

Commercial Thermal Network Solvers

Math Model

- C&R Technologies
 - SINDA/FLUINT, Thermal Desktop, RadCAD
- MSC Software
 - Sinda, SindaRad, Patran
- ESATAN-TMS
 - Thermal, Radiative, CADbench

The Control Volume Concept

Math Model

$$\sum$$
 Energy In $-\sum$ Energy Out $=$

Energy Stored, Generated and/or Consumed

Heat (transfer) is thermal energy transfer due to a temperature difference

The Lumped Capacitance Method: Biot Number Math Model

The Biot number, Bi, is:

$$Bi = \frac{hL_c}{k} < 0.1$$
 $L_c = \frac{\text{volume}}{\text{surface area}} = \frac{V}{A}$

where the characteristic length, L_c , is:

Convection Correlations

Math Model

The heat flow rate is:

$$Q=hA(T_s-T_\infty)$$

where *h* is the heat transfer coefficient, T_s is the surface temperature and T_{∞} is the fluid temperature. Correlations in terms of the Nusselt number are often used to determine *h*:

$$Nu = \frac{hL_c}{k}$$
 $h = \frac{kNu}{L_c}$

where L_c is a characteristic length associated with the fluid flow geometry.

Surface Radiation

Math Model

Radiation exchange between a surface and *large* surroundings The heat flow rate is (Equation (1.32), p. 32 in [LL16]):

$$Q = \sigma \epsilon_s A_s (T_s^4 - T_{sur}^4)$$

where σ is the Stefan-Boltzmann constant, ϵ_s is the surface emissivity and A_s is the area of the surface. Note that the surface area, A_s , must be *much* smaller than the surrounding surface area, A_{sur} :

$$A_s \ll A_{sur}$$

Note that the temperatures must be the absolute temperature, K or $^{\circ}R$

Radiation Heat Transfer Coefficient

Math Model

Define the radiation heat transfer coefficient, h_r (see Equation (2.29), page 74 in [LL16]):

$$h_r = \epsilon \sigma (T_s + T_{sur}) (T_s^2 + T_{sur}^2)$$

Then,

$$Q = h_r A_s (T_s - T_{sur})$$

Note:

- *h_r* is temperature dependent
- ▶ *h_r* can be used to compare the radiation to the convection heat transfer from a surface, *h* (if *T_{sur}* and *T_∞* have similar values)

Range of Radiation Heat Transfer Coefficient

<ロト<部ト<注ト<注ト<注、注 11/40

Introducing TNSolver

TNSolver User Guide

- Thermal Network Solver TNSolver
- MATLAB/Octave program
 - GNU Octave is an open source clone of MATLAB
- Thermal model is described in a text input file
 - Do not use a word processor, use a text editor, such as:
 - Cross-platform: vim/gvim, emacs, Bluefish, among many others
 - Windows: notepad, Notepad++
 - MacOS: TextEdit, Smultron
 - Linux: see cross-platform options
- Simulation results are both returned from the function and written to text output files for post-processing

Thermal Network Terminology

TNSolver User Guide

- Time dependency
 - Steady state or transient
 - Initial condition is required for transient
- Geometry
 - Control Volume volume, $V = \int_V dV$
 - Node: •, $T_{node} = \int_V T(x_i) dV$, finite volume
 - Control Volume Surface area, $A = \int_A dA$
 - Surface Node: \bigcirc , $T_{\text{surface node}} = \int_A T(x_i) dA$, zero volume
- Material properties
- Conductors
 - Conduction
 - Convection
 - Radiation
- Boundary conditions
 - Boundary node: A
- Sources/sinks

TNSolver Input Example of Text Input File

```
Simple Wall Model
Begin Solution Parameters
 type = steady
End Solution Parameters
Begin Conductors
wall conduction in out 2.3 1.2 1.0 ! k L A
fluid convection out Tinf 2.3 1.0
                                         I h A
End Conductors
Begin Boundary Conditions
 fixed T 21.0 in ! Inner wall T
 fixed T 5.0 Tinf ! Fluid T
End Boundary Conditions
```


! begins a comment (MATLAB uses %)

TNSolver Input File

- What do we need in the input file for the lumped mass heat transfer experiment?
- Transient convection problem, with surface radiation
- Lumped capacitance approximation, Bi < 0.1, so no conduction in the solid object</p>

Solution Parameters

TNSolver Input File

```
Begin Solution Parameters
title = Lumped Mass Heat Transfer Experiment
type = transient
begin time = (R)
end time = (R)
time step = (R)
number of time steps = (I)
End Solution Parameters
```

(R) is a single real number(I) is a single integer number

Nodes TNSolver Input File

Define nodes which have a volume

```
Begin Nodes
! label rho*c V
(S) (R) (R)
End Nodes
```

(S) is a single character string

Convection Conductor

TNSolver Input File

$$Q_{ij}=hA(T_s-T_\infty)$$

The heat transfer coefficient *h* is known.

External Forced Convection (EFC) Conductor

$$Q_{ij} = h A (T_s - T_\infty)$$

Heat transfer coefficient, h, is evaluated using the correlation for external forced convection from a sphere with diameter Dand fluid velocity of u.

```
Begin Conductors
! Ts Tinf
! label type nd_i nd_j parameters
(S) EFCsphere (S) (S) (S) (R) (R) ! material, u, D
End Conductors
```

Note that Re, Nu and h are reported in the output file.

External Natural Convection (ENC) Conductor

$$Q_{ij} = hA(T_s - T_\infty)$$

Heat transfer coefficient, h, is evaluated using the correlation for external natural convection from a sphere with diameter D.

```
Begin Conductors
! Ts Tinf
! label type nd_i nd_j parameters
(S) ENCsphere (S) (S) (S) (R) ! material, D
End Conductors
```

Note that Ra, Nu and h are reported in the output file.

Surface Radiation Conductor

TNSolver Input File

$$Q_{ij} = \sigma \epsilon A_s (T_s^4 - T_{env}^4)$$

 σ is the Stefan-Boltzmann constant and ϵ is the surface emissivity.

```
Begin Conductors
! label type nd_i nd_j parameters
  (S) surfrad (S) (S) (R) (R) ! emissivity, A
End Conductors
```

Note that h_r is reported in the output file.

Boundary Conditions

TNSolver Input File

Specify a fixed temperature boundary condition, T_b , to one or more nodes in the model.

```
Begin Boundary Conditions

! type Tb Node(s)

fixed_T (R) (S ...)

End Boundary Conditions
```

(S ...) one or more character strings

Initial Conditions

TNSolver Input File

Specify the initial temperatures, T_0 , to the nodes in the model.

```
Begin Initial Conditions
! T0 Node(s)
  (R) (S ...)
End Initial Conditions
```

Example Input File

TNSolver Input File

```
Begin Solution Parameters
 title = Lumped Capacitance Experiment - Object A
 type = transient
 begin time = 0.0
 end time = 341.5
 time step = 0.5
! number of time steps = 20
End Solution Parameters
Begin Nodes
 1 3925000.0 6.2892e-05 ! rho*c, V
End Nodes
Begin Conductors
 conv convection 1 Tinf 12.0 0.0076 ! h, A
! conv EFCsphere 1 Tinf air 13.13 0.04934 ! material, u, D
! conv ENCsphere 1 Tinf air 0.04934 ! material, D
 rad surfrad 1 Tinf 0.95 0.0076 ! emissivity, A
End Conductors
                                        イロト イポト イラト イラト
```

Example Input File (continued) TNSolver Input File

Begin Boundary Conditions fixed_T 25.0 Tinf End Boundary Conditions

Begin Initial Conditions 99.0 1 ! Ti, node End Initial Conditions

Verification using Analytical Solution

TNSolver Verification

Backward Euler time integration is used in TNSolver. How does time step affect accuracy? Utilitize the analytical solution Equation (1.22), p. 22 in [LL16]:

$$\frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA}{\rho cV}\right)t\right]$$

This is provided in the MATLAB function lumpedmass.m:

[T, Bi] = lumpedmass(time, rho, c, V, h, A, Ti, Tinf, k)

Example calculation using: $D = 0.04931 \ m, T_i = 100 \ C, T_{\infty} = 25 \ C$ $\rho = 7850 \ kg/m^3, c = 500 \ J/kg \cdot K$ $h = 25.0 \ W/m^2 \cdot K, k = 62.0 \ W/m \cdot K$

Verification using Analytical Solution

TNSolver Verification

27/40

Experiment Data Analysis with TNSolver

Data Analysis

Three MATLAB functions are provided for a least-squares analysis using TNSolver.

Recommend placing the experimental data into a MATLAB .mat file using save in order to load the experimental specimen temperature expT.

- Estimate convection heat transfer coefficient, *h*, for the natural convection data using ls_lumped_h.m
- 2. Estimate velocity, *u*, for the forced convection data using ls_lumped_vel.m
- 3. Estimate surface emissivity, ϵ , using <code>ls_lumped_emiss.m</code>

Estimate h

Results

Example for object A, natural convection input file ANC.inp

- 1. Set begin and end time to match experimental data range
- 2. Set the time step to match experimental data sample rate
- 3. Set material properties and object geometries in input file
- 4. Set the boundary and initial conditions to match experiment
- 5. Use the convection conductor

```
>> load NC_A
>> h = linspace(10,35,10);
>> [besth] = ls_lumped_h('ANC', expT, h)
```

Estimate *h* Results and Plot

Results

30/40

Estimate Velocity

Results

Example for object A, forced convection input file AFC.inp

- 1. Set begin and end time to match experimental data range
- 2. Set the time step to match experimental data sample rate
- 3. Set material properties and object geometries in input file
- 4. Set the boundary and initial conditions to match experiment
- 5. Use the EFCsphere convection conductor

```
>> load FC_A
>> u = linspace(10,20,10);
>> [bestvel] = ls_lumped_vel('AFC', expT, u)
```

Estimate Velocity Results and Plot Results

32/40

Estimate Emissivity

Results

Example for object A, forced convection input file AFC.inp

- 1. Set begin and end time to match experimental data range
- 2. Set the time step to match experimental data sample rate
- 3. Set material properties and object geometries in input file
- 4. Set the boundary and initial conditions to match experiment
- 5. Use the EFCsphere convection conductor and the estimated velocity from the previous analysis

```
>> load FC_A
>> eps = linspace(.8,1,10);
>> [beste] = ls_lumped_emiss('AFC', expT, eps)
```

Estimate Emissivity Results and Plot Results

<ロト < 団 ト < 巨 ト < 巨 ト 三 の Q (C) 34/40

Conclusion

- Math model for lumped capacitance method
- TNSolver input file described
- TNSolver thermal network model verification with analytical solution demonstrated
- Lumped Mass Experiment data analysis

Questions?

Appendix

Obtaining GNU Octave

GNU Octave

GNU Octave

http://www.gnu.org/software/octave/

Octave Wiki

- http://wiki.octave.org
- Octave-Forge Packages (similar to MATLAB Toolbox packages)
 - http://octave.sourceforge.net
- Windows Installation
 - Binaries are at:
 - https://ftp.gnu.org/gnu/octave/windows/
 - As of August 1, 2016, the latest version of Octave is 4.0.3
 - Download the octave-4.0.3.zip file and unzip in a Windows folder

External Forced Convection over a Sphere Math Model

Equation (7.48), p. 444, in [BLID11]

$$\overline{Nu}_D = 2 + \left(0.4 Re_D^{1/2} + 0.06 Re_D^{2/3}\right) Pr^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4}$$

where D is the diameter of the sphere and the Reynolds number, Re_D , is:.

$${m Re}_{m D}=rac{
ho u {m D}}{\mu}=rac{u {m D}}{
u}$$

Note that the fluid properties are evaluated at the fluid temperature, T_{∞} , except the viscosity, μ_s , evaluated at the surface temperature, T_s .

External Natural Convection over a Sphere

Math Model

Equation (9.35), page 585 in [BLID11]

$$\overline{Nu}_{D} = 2 + \frac{0.589 Ra_{D}^{1/4}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}}$$

where *D* is the diameter of the sphere and the the Rayleigh number, Ra_D , is:.

$${\it Ra}_{\it D}={\it Gr}{\it Pr}=rac{g
ho^2ceta D^3\left(T_s-T_\infty
ight)}{k\mu}=rac{geta D^3\left(T_s-T_\infty
ight)}{
ulpha}$$

Note that the fluid properties are evaluated at the film temperature, T_f :

$$T_f = \frac{T_s + T_\infty}{2}$$

References I

[BLID11] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt. Introduction to Heat Transfer. John Wiley & Sons, New York, sixth edition, 2011.
[LL16] J. H. Lienhard, IV and J. H. Lienhard, V. A Heat Transfer Textbook. Phlogiston Press, Cambridge, Massachusetts, fourth edition, 2016. Available at: http://ahtt.mit.edu.