The Cannon Problem

Bob Cochran

February 12, 2018
ME498/599 Ballistic Problem with Air Resistance

- Sensitivity analysis
- Uncertainty quantification
- Uncertainty propagation
The equations of motion (Newton’s Second Law: \(ma = \sum F \)) are:

- \(\frac{d^2x(t)}{dt^2} = -\frac{D_f}{m} \frac{dx(t)}{dt} = -\frac{D_f}{m} Vv_x \)
- \(\frac{d^2y(t)}{dt^2} = -\frac{D_f}{m} \frac{dy(t)}{dt} - g = -\frac{D_f}{m} Vv_y - g \)
- x-direction velocity: \(v_x = \frac{dx(t)}{dt} \text{ (m/s)} \)
- y-direction velocity: \(v_y = \frac{dy(t)}{dt} \text{ (m/s)} \)
- x-direction acceleration: \(a_x = \frac{d^2x(t)}{dt^2} \text{ (m/s}^2) \)
- y-direction acceleration: \(a_y = \frac{d^2y(t)}{dt^2} \text{ (m/s}^2) \)
- \(V = \sqrt{v_x^2 + v_y^2} \) is the velocity of the sphere (m/s)
- mass of the sphere: \(m = \rho_s V_s \text{ (kg)} \)
The drag force parameter is:

\[D_f = \frac{\rho C_d A}{2} \text{ (kg/m)} \]

- \(\rho \) is the fluid density (kg/m\(^3\))
- \(C_d \) is the drag coefficient (dimensionless)
 - a function of Reynolds number: \(Re = \frac{\rho V D}{\mu} \)
 - \(D \) (m), is the diameter of the sphere
 - \(\mu \) (kg \cdot m/s), is the fluid viscosity
- \(A \) is the cross sectional area (frontal area)
 - For a sphere \(A = \frac{\pi D^2}{4} \) (m\(^2\))
Drag Coefficient Correlation for a Sphere

Drag coefficient correlation for a sphere:

\[
C_d = \frac{24}{Re} + \frac{2.6 \left(\frac{Re}{5.0} \right)^{1.52}}{1 + \left(\frac{Re}{5.0} \right)^{1.52}} + \frac{0.411 \left(\frac{Re}{263,000} \right)^{-8.0}}{1 + \left(\frac{Re}{263,000} \right)^{-8.0}} + \frac{0.25 \left(\frac{Re}{10^6} \right)}{1 + \left(\frac{Re}{10^6} \right)}
\]

valid for \(0.01 \leq Re \leq 10^6\)

Equation (8.83) on p. 624 in [Mor13]\(^1\)

Correlation Comparison with Data

\[C_D = \frac{24}{Re} + \frac{2.6}{1 + \left(\frac{Re}{5.0}\right)^{1.52}} + \frac{0.411}{1 + \left(\frac{Re}{263,000}\right)^{0.00}} + \frac{0.25}{1 + \left(\frac{Re}{10^6}\right)^{0.00}} \]
Summary of Math Model Parameters

- **Material Properties**
 - Fluid density $\rho (kg/m^3)$
 - Fluid viscosity $\mu (kg \cdot m/s = Pa \cdot s = N \cdot s/m^2)$
 - Sphere density $\rho_s (kg/m^3)$

- **Geometry**
 - Sphere diameter $D (m)$, volume is $V_s = \frac{4\pi r^3}{3} = \frac{\pi D^3}{6} (m^3)$

- **Initial/Boundary Conditions**
 - Muzzle velocity $V (m/s)$
 - Angle $\theta (^\circ)$, $v_x = \cos(\theta)V$ and $v_y = \sin(\theta)V$

- **Correlation**
 - Drag coefficient $C_d(Re)$, a function of Reynolds number

- **Constants**
 - Gravity $g (m^2/s)$