SAND2016-1198PE

Exceptional service in the

national

interest

Dakota Software Training

Uncertainty Quantification

http://dakota.sandia.gov

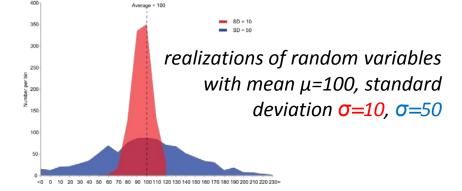
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

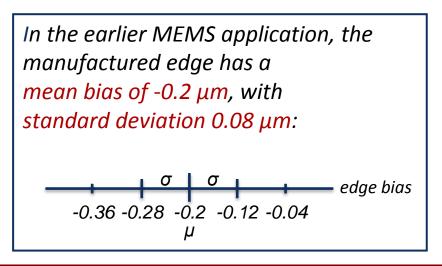
Familiarize Yourself with Key Statistics Ideas: Moments of Random Variables

Understanding the following basic concepts will help with Dakota UQ

- Concept of a random variable *X*
- Mean (*m*, μ): expected or average value of *X*, *e.g.*, *mean of sample of size N*: $\mu_T = \frac{1}{N} \sum_{i=1}^N T(u^i)$
- Standard deviation (s, σ): measure of dispersion / variability of X:

$$\sigma_T = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[T(u^i) - \mu_T \right]^2}$$

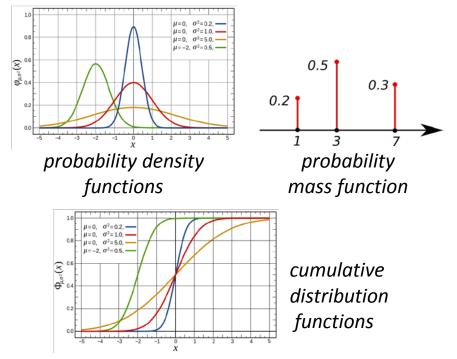




Familiarize Yourself with Key Statistics Ideas: PDFs, CDFs, Intervals

Understanding the following basic concepts will help with Dakota UQ

- Probability density / probability mass function: relative likelihood of a given value of X
- Cumulative distribution function: probability that X will take on a value less than or equal to x: P(X≤x)
- Interval-valued uncertainty: X can take on any value in the interval [a,b], but no probability or likelihood of one value vs. another



For the earlier thermal application, a PDF or CDF can answer questions about the probability of exceeding a critical temperature.

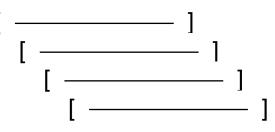
Categories of Uncertainty

This distinction can help in selecting Dakota variable types and method

- Aleatory (think probability density function, frequency; sufficient data)
 - Inherent variability (e.g., in a population), type-A, stochastic
 - Irreducible: further knowledge won't help
 - Ideally simulation would incorporate this variability

Epistemic (e.g., bounded intervals, distribution with uncertain parameters)

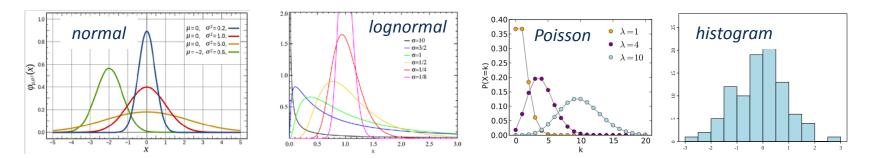
- Subjective, type-B, state of knowledge uncertainty
- Reducible: more data or information, would make uncertainty estimation more precise
- Fixed value in simulation, e.g., elastic modulus, but not well known for this material



See separate course on motivation for aleatory vs. epistemic uncertainty

Characterizing Uncertainties to Dakota

- Must characterize each variable's uncertainty and (optionally) any correlation between pairs of variables. Need not be normal (or uniform)!
- May require processing data with math/stats tool to fit distributions, performing literature searches, or querying experts



Dakota uncertain variable types:

- Aleatory continuous: normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram
- Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric, histogram point (integer, real, string)
- Epistemic: continuous interval, discrete interval, discrete set

Specifying Dakota Uncertain Variables

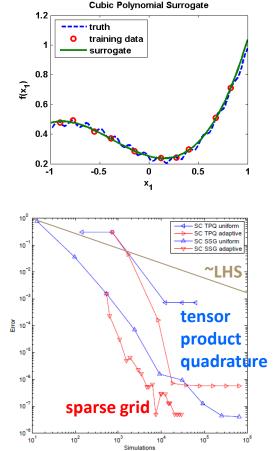
- UQ problems are specified to Dakota using uncertain variables (keywords *_uncertain)
- Typically generic response functions are used
- Thermal UQ example: here is a possible Dakota input file fragment for the uncertain variable types shown on the previous slide
- See the <u>Reference Manual</u> <u>variables section</u> for all variable types and their parameters

variables							
normal_uncertain 1							
descriptors		'dens	sity				
means	8	3.1					
std_deviation	ns 2	1.7					
lognormal_uncertain 1							
descriptors	' 9	speci	ific_	_heat'			
means	2	.7					
error_factors	5 1	.1					
poisson_uncertain							
descriptors	descriptors 'fire_strength'						
lambdas	1.5						
histogram_bin_uncertain 1							
descriptors	'foam_thickness'						
num_pairs	4						
abscissas	2.5	3.0	3.5	4.0			
counts	15	11	20	0			
responses							

```
response_functions 2
descriptors 'pressure' 'temperature'
```

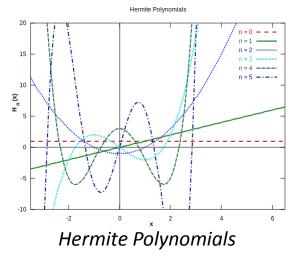
Stochastic Expansions: What Are They?

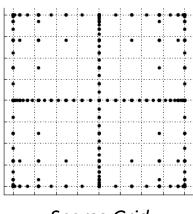
- General-purpose UQ methods that build UQ-tailored polynomial approximations of the output responses
- Perform particularly well for smooth model responses
- Resulting convergence of statistics can be considerably faster than sampling methods
- Need to specify the Dakota method:
 - Polynomial Chaos (polynomial_chaos): specify the type of orthogonal polynomials and coefficient estimation scheme, e.g., sparse grid or linear regression.
 - Stochastic Collocation (stoch_collocation): specify the type of polynomial basis and the points at which the response will be interpolated; supports piecewise local basis

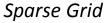


Polynomial Chaos: How Does It Work?

- Uses an orthogonal polynomial basis \(\varphi_i(u)\), e.g., Wiener-Askey basis, with Hermite polynomials orthogonal w.r.t. normal density, Legendre polynomials orthogonal w.r.t. uniform density
- Evaluates the model in a strategic way (sampling, quadrature, sparse grids, cubature)...
- ...to efficiently approximate the coefficients of an orthogonal polynomial approximation of the response $f(u) \approx p(u) = \sum_{i} c_i \varphi_i(u)$
- And analytically calculates statistics from the approximation instead of approximating the statistics with MC samples







Dakota UQ Methods Summary

character	method class	problem character	variants	
aleatory	probabilistic sampling	nonsmooth, multimodal, modest cost, # variables	Monte Carlo, LHS, importance	
	local reliability	smooth, unimodal, more variables, failure modes	mean value and MPP, FORM/SORM,	
	global reliability	nonsmooth, multimodal, low dimensional	EGRA	
	stochastic expansions	nonsmooth, multimodal, low dimension	polynomial chaos, stochastic collocation	
epistemic	interval estimation	simple intervals	global/local optim, sampling	
	evidence theory	belief structures	global/local evidence	
both	nested UQ	mixed aleatory / epistemic	nested	

Also see Usage Guidelines in User's Manual

Using Dakota-generated Data

- Users commonly work with the Dakota tabular data file (dakota_tabular.dat by default)
- Import tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to
 - Generate histogram or other probability plots
 - Generate scatterplots to assess variability or see outliers / extreme behavior
 - Fit distributions to generated model outputs
 - Post-process samples to generate other statistics, e.g., probability of failure, ANOVA, variance-based decomposition, Sobol indices, safety factors
- Use Dakota results to refine characterization of variables and repeat study
- Decision making considerations
 - Consider what form your customers needs the information in to have impact
 - Consider engaging a Dakota team member in conversation with analyst and decision maker

Method-oriented

BACKUP SLIDES

Generalized Polynomial Chaos Expansions (PCE)

Approximate response with Galerkin projection using multivariate orthogonal polynomial basis functions defined over standard random variables

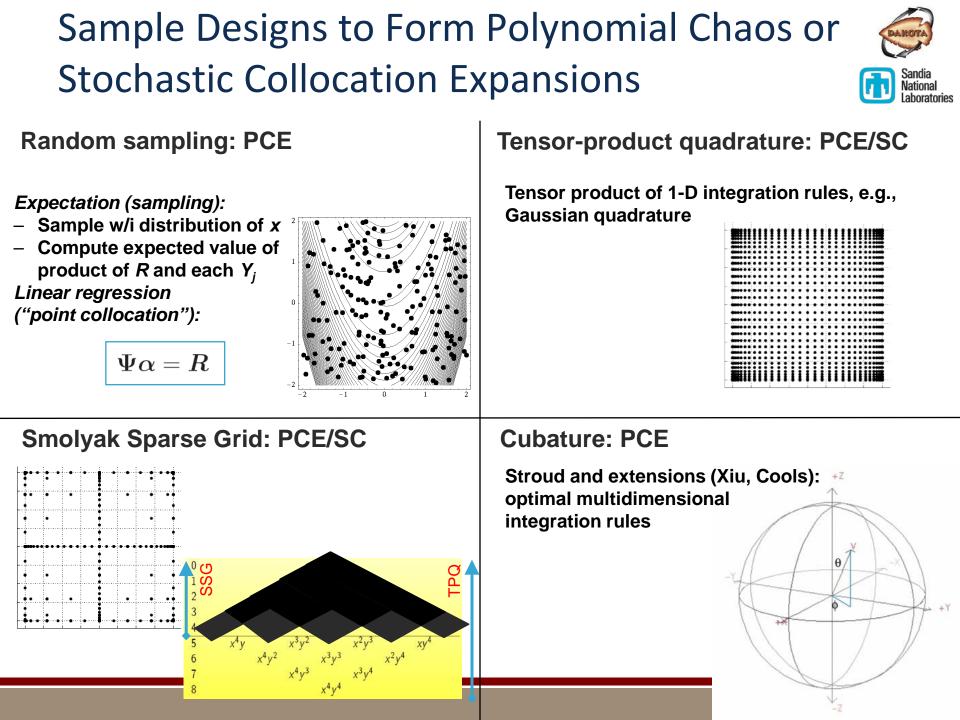
$$R = \sum_{j=0}^{P} \alpha_{j} \Psi_{j}(\boldsymbol{\xi})$$
$$R(\boldsymbol{\xi}) \approx f(\boldsymbol{u})$$

$$g_{j} = \frac{\langle R, \Psi_{j} \rangle}{\langle \Psi_{j}^{2} \rangle} = \frac{1}{\langle \Psi_{j}^{2} \rangle} \int_{\Omega} R \, \Psi_{j} \, \varrho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}$$

- Intrusive or non-intrusive
- Wiener-Askey Generalized PCE: optimal basis selection leads to exponential convergence of statistics

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]
Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$
Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$

Can also numerically generate basis orthogonal to empirical data (PDF/histogram)



Adaptive PCE/SC: Emphasize Key Dimensions

- Judicious choice of new simulation runs
- Uniform p-refinement
 - Stabilize 2-norm of covariance
- Adaptive p-refinement
 - Estimate main effects/VBD to guide
- h-adaptive: identify important regions and address discontinuities
- h/p-adaptive: p for performance;
 h for robustness

