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Familiarize Yourself with Key Statistics Ideas: 
Moments of Random Variables 

Understanding the following basic concepts will help with Dakota UQ 
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 Concept of a random variable X 
 

 Mean (m, μ): expected or average 
value of X, e.g., mean of sample of 
size N: 
 

 Standard deviation (s, σ): measure 
of dispersion / variability of X: 

realizations of random variables 
with mean μ=100, standard 

deviation σ=10, σ=50 
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In the earlier MEMS application, the 
manufactured edge has a  
mean bias of -0.2 μm, with  
standard deviation 0.08 μm: 

μ 
-0.2 -0.04 -0.12 -0.28 -0.36 

σ σ edge bias  



Familiarize Yourself with Key Statistics Ideas: 
PDFs, CDFs, Intervals 

Understanding the following basic concepts will help with Dakota UQ 
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 Probability density / probability 
mass function: relative likelihood 
of a given value of X 
 

 Cumulative distribution function: 
probability that X will take on a 
value less than or equal to x: 
P(X≤x) 
 

 Interval-valued uncertainty: X can 
take on any value in the interval 
[a,b], but no probability or 
likelihood of one value vs. another 

probability density  
functions 

cumulative  
distribution 
 functions 

probability  
mass function 

For the earlier thermal application, 
a PDF or CDF can answer questions 
about the probability of exceeding a 

critical temperature. 



[                            ] 
[                            ] 

[                            ] 
[                            ] 

Categories of Uncertainty 

This distinction can help in selecting Dakota variable types and method 
 Aleatory (think probability density function, frequency; sufficient data) 

 Inherent variability (e.g., in a population), type-A, stochastic 
 Irreducible: further knowledge won’t help 
 Ideally simulation would incorporate this variability 

 
 Epistemic (e.g., bounded intervals, distribution with uncertain parameters) 

 Subjective, type-B, state of knowledge uncertainty 
 Reducible:  more data or information, would  

make uncertainty estimation more precise 
 Fixed value in simulation, e.g., elastic 

modulus, but not well known for this material 
 

See separate course on motivation for aleatory vs. epistemic uncertainty 
 



Characterizing Uncertainties to Dakota 

 Must characterize each variable’s uncertainty and (optionally) any 
correlation between pairs of variables.  Need not be normal (or uniform)!  

 May require processing data with math/stats tool to fit distributions, 
performing literature searches, or querying experts 
 
 
 
 

Dakota uncertain variable types: 
 Aleatory continuous: normal, lognormal, uniform, loguniform, triangular, 

exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram 
 Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric, 

histogram point (integer, real, string) 
 Epistemic: continuous interval, discrete interval, discrete set 
 

14 

normal lognormal Poisson histogram 



Specifying Dakota Uncertain Variables 

 UQ problems are specified to 
Dakota using uncertain variables 
(keywords *_uncertain) 

 Typically generic response 
functions are used 
 

 Thermal UQ example: here is a 
possible Dakota input file fragment 
for the uncertain variable types 
shown on the previous slide 
 

 See the Reference Manual 
variables section for all variable 
types and their parameters 

variables 
  normal_uncertain 1 
    descriptors     'density' 
    means           8.1 
    std_deviations  1.7 
  lognormal_uncertain 1 
    descriptors    'specific_heat' 
    means          2.7 
    error_factors  1.1 
  poisson_uncertain 
    descriptors  'fire_strength' 
    lambdas      1.5 
  histogram_bin_uncertain 1 
    descriptors  'foam_thickness' 
    num_pairs    4 
      abscissas  2.5 3.0 3.5 4.0 
      counts     15  11  20  0 
 
responses 
  response_functions 2 
  descriptors 'pressure' 'temperature' 
  ... 
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https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html


Stochastic Expansions: 
What Are They? 

 General-purpose UQ methods that build UQ-tailored 
polynomial approximations of the output responses 

 Perform particularly well for smooth model responses 
 Resulting convergence of statistics can be  

considerably faster than sampling methods 
 

 Need to specify the Dakota method: 
 Polynomial Chaos (polynomial_chaos): specify the type of 

orthogonal polynomials and coefficient estimation scheme, 
e.g., sparse grid or linear regression. 

 Stochastic Collocation (stoch_collocation): specify the type of 
polynomial basis and the points at which the response will be 
interpolated; supports piecewise local basis 
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~LHS 

sparse grid 

tensor  
product 
quadrature 



Polynomial Chaos: 
How Does It Work? 

 Uses an orthogonal polynomial basis           , e.g., 
Wiener-Askey basis, with Hermite polynomials 
orthogonal w.r.t. normal density, Legendre 
polynomials orthogonal w.r.t. uniform density 

 Evaluates the model in a strategic way 
(sampling, quadrature, sparse grids, cubature)…  

 …to  efficiently approximate the coefficients of 
an orthogonal polynomial approximation of the 
response 
 
 

 And analytically calculates statistics from the 
approximation instead of approximating the 
statistics with MC samples 
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𝑓𝑓 𝑢𝑢 ≈ 𝑝𝑝 𝑢𝑢 = �𝑐𝑐𝑖𝑖𝜑𝜑𝑖𝑖(𝑢𝑢)
𝑖𝑖

 

𝜑𝜑𝑖𝑖(𝑢𝑢) 

Sparse Grid 

Hermite Polynomials 



Dakota UQ Methods Summary 

character method class problem character variants 
aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 
Monte Carlo, LHS, 
importance 

local reliability smooth, unimodal, more 
variables, failure modes 

mean value and MPP, 
FORM/SORM,  

global reliability nonsmooth, multimodal, 
low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 
low dimension 

polynomial chaos, 
stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 
evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

Also see Usage Guidelines in User’s Manual 



Using Dakota-generated Data 

 Users commonly work with the Dakota tabular data file  
(dakota_tabular.dat by default) 

 Import tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to  
 Generate histogram or other probability plots 
 Generate scatterplots to assess variability or see outliers / extreme behavior 
 Fit distributions to generated model outputs 
 Post-process samples to generate other statistics, e.g., probability of failure, 

ANOVA, variance-based decomposition, Sobol indices, safety factors 
 Use Dakota results to refine characterization of variables and repeat study 

 
 Decision making considerations 

 Consider what form your customers needs the information in to have impact 
 Consider engaging a Dakota team member in conversation with analyst and 

decision maker 
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BACKUP SLIDES 
Method-oriented 



 Intrusive or non-intrusive 
 Wiener-Askey Generalized PCE: optimal basis selection leads to exponential 

convergence of statistics 
 
 
 
 
 
 

 Can also numerically generate basis orthogonal to empirical data (PDF/histogram) 
 

Approximate response with Galerkin projection using multivariate orthogonal 
polynomial basis functions defined over standard 
random variables 

 

Generalized Polynomial  
Chaos Expansions (PCE) 

R(ξ) ≈ f(u) 



Sample Designs to Form Polynomial Chaos or 
Stochastic Collocation Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 
Stroud and extensions (Xiu, Cools): 
optimal multidimensional  
integration rules 

Expectation (sampling): 
– Sample w/i distribution of x  
– Compute expected value of 

product of R and each Yj 
Linear regression  
(“point collocation”): 

TP
Q

 

S
S

G
 

Tensor product of 1-D integration rules, e.g., 
Gaussian quadrature 



Adaptive PCE/SC: 
Emphasize Key Dimensions 
 Judicious choice of new simulation runs 
 Uniform p-refinement 

 Stabilize 2-norm of covariance 
 Adaptive p-refinement 

 Estimate main effects/VBD to guide 
 h-adaptive: identify important regions 

and address discontinuities 
 h/p-adaptive: p for performance; 

h for robustness 
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Anisotropic index sets Anisotropic Gauss-Hermite  

~LHS 

SSG TPQ 
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