SAND2016-3330PE

Exceptional service in the

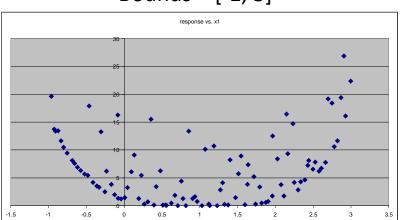
national

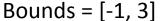
interest

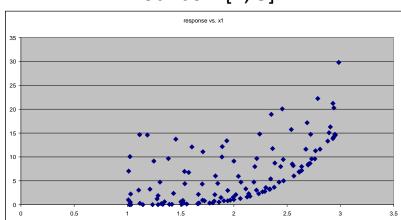
Dakota Software Training

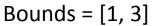
Sensitivity Analysis

http://dakota.sandia.gov


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


Observation: Correlations




- Large correlation coefficients indicate important factors, however factors with small correlation may still be significant
- Assumptions about input domain (bounds) matter
- Diagnostics like scatter plots can help avoid pitfalls

Example: function with a quartic-like trend over two different domains

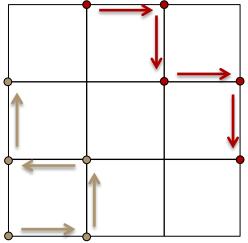
Additional SA Methods: Variance-based Decomposition (VBD)

VBD assumes an orthogonal decomposition of the response

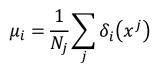
$$f(x) = f_0 + \sum_i f_i(x_i) + \sum_{i < j} f_{ij}(x_i, x_j) + \cdots$$

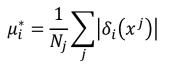
 Sensitivity indices summarize how response variability can be apportioned to individual input factors.

$$S_{i} = \frac{Var_{x_{i}}[E(f|x_{i})]}{Var(f)} \qquad T_{i} = \frac{E_{x_{-i}}[Var(f|x_{-i})]}{Var(f)} = \frac{Var(f) - Var_{x_{-i}}[E(f|x_{-i})]}{Var(f)}$$


Main effect S_i measures effect of varying x_i alone (averaging over other factors). Total effect T_i includes its interactions with other variables.

- Directly enabling this for a sampling or DOE method is often prohibitively expensive, requiring $(d+2) \times N$ runs, where each replicate has N samples
- Instead, configure Dakota to automatically build a polynomial chaos expansion (PCE) from the earlier Latin hypercube sampling dataset and compute main and total effects analytically


Additional SA Methods: Morris One-at-a-Time (MOAT)


- Conduct "tours" (sampling on coordinate direction paths) around the global space x.
- For each step *j* in coordinate direction *i*, compute an elementary effect: δ_i(x^j) = (f(x^j+Δe_i)-f(x^j))/Δ
 (like a forward difference local sensitivity, but with large step)
- Compute statistics on the elementary effects to assess relative influence of each variable *i* over whole space
 - Mean μ_i : measure of linear/main/first-order effect
 - Modified mean
 µ_i^{*}: same, controlling for cancellation
 - Standard deviation σ_i: measure of variability across input space; indicative of interaction and/or nonlinear effects
- Number samples must be a multiple of (d+1); recommend 2x (d+1) to 10x (d+1)

partitions=3 (levels = 4)

$$\sigma_i = \sqrt{\frac{1}{N_j - 1} \sum_j \left(\delta_i(x^j) - \mu_i\right)^2}$$

Other SA Approaches Typically Only Require Changing the Method Block

Dakota Reference Manual guides in specifying keywords

method,	
sampling	
sample_type lhs	
seed = 52983	
samples = 100	

LHS Sampling

method,
sampling
sample_type lhs
seed = 52983
samples = 500
<pre>variance_based_decomp</pre>

Variance-based Decomposition using LHS Sampling method, dace oas main_effects seed = 52983 samples = 500

Main Effects Analysis using Orthogonal Arrays

method,
 psuade_moat
 partitions = 3
 seed = 52983
 samples = 100

Morris One-at-a-Time

Dakota SA Methods Summary

Category	Dakota method names	univariate trends	correlations	modified mean, s.d.	main effects Sobol inds.	importance factors / local sensis	
Parameter studies	centered, vector, list	Ρ					
	grid		D		Ρ		
Sampling	sampling, dace lhs, dace random, fsu_quasi_mc, fsu_cvt with variance_based_decomp	Ρ	D		D		e F
DACE (DOE- like)	dace {oas, oa_lhs, box_behnken, central_composite}		D		D		
MOAT	psuade_moat			D			
PCE, SC	polynomial_chaos, stoch_collocation				D	D	
Mean value	local_reliability					D	

also multipurpose!

D: Dakota-generated

P: Post-processing required (3rd party tools)

Sensitivity Analysis: Recommended Practice Summary

- Conduct an initial centered parameter study, requiring 2 × d × steps + 1 runs, ideally with small, then large perturbations
 - Only univariate effects: can't get interactions, however results aren't confounded
- Conduct a global sampling design with from $2 \times d$ to $10 \times d$ samples
 - Input/output pairs with large (> 0.7) simple or partial correlations are significant
 - Smaller ones may still be relevant; to find out, generate scatter plots, analyze same data set using PCE with VBD
- Alternately, or in addition for comparison, conduct a MOAT study to get results similar to VBD
 - From $2 \times d$ to $10 \times d$ samples
- Use third-party tools as needed to generate additional views or conduct analyses