Lumped Mass Heat Transfer Experiment Thermal Network Solution with TNSolver

Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org

ME 331 Introduction to Heat Transfer University of Washington November 21, 2017

《曰》 《聞》 《臣》 《臣》 三臣 …


Outline

- Lumped Mass Heat Transfer Experiment
- Math Model
- TNSolver Input File
- Test Data Analysis

Objective

- Determine the convection heat transfer coefficient for a variety of shapes
- Both natural (free) and forced external convection
- Surface radiation effects due to differences in emissivity
- Fin effect of the stem

Shapes

Shape Geometry and Properties

Specimen	Geometry	Diameter	Length	Mass	Volume	Density	Plating
2000		[mm]	[mm]	[g]	[cm^3]	[g/cm^3]	
A	Sphere	49.34		570.7	62.86	9.08	Black
В	Sphere	49.17		570.3	62.21	9.17	Gold
С	Sphere	48.76		165.7	60.67	2.73	Chrome
D	Sphere	49.40		165.4	63.09	2.62	Black
E	Sphere	49.10		175.3	61.95	2.83	Gold
F	Cylinder	27.90	75.78	132.3	46.31	2.86	Gold
G	Cylinder	38.08	28.78	88.2	32.76	2.69	None
Н	Cylinder	31.79	50.82	108.8	40.32	2.70	Black
1	Cylinder	19.06	76.29	58.3	21.76	2.68	None
J	Cylinder	38.09	28.59	289.4	32.56	8.89	None
K	Cylinder	31.73	50.89	355.9	40.22	8.85	None
L	Cube		25.27	132.0	16.14	8.18	Gold
M	Cube		25.42	136.5	16.43	8.31	Black
N	Cube		25.44	45.7	16.46	2.78	Black
0	Sphere	36.15		23.0	24.72	0.93	None
Р	Cylinder	88.98	30.52	1678.9	189.69	8.85	None

Shape Material Properties

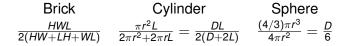
	Material Densities*	Specific heat**	
	[g/cm^3]	[kJ/kg*K]	
Steel	7.85	0.50	
Copper	8.90	0.39	at 27C
Brass	8.40 - 8.60	0.40	
Aluminum	2.60 - 2.80	0.90	at 300K
Rubber	0.96 - 1.30	2.01	

Approach

- Use water bath to provide initial temperature of the object
- A thermocouple is placed through the stem into the center of the object
- A second thermocouple will record the ambient air temperature
- For natural convection let the object cool to 50 C, which may take up to 45 minutes
- For forced convection turn on the fan and let the object cool to 50 C

Water Bath for Initial Temperature Condition

Forced Convection with Fan



The Lumped Capacitance Method: Biot Number Math Model

The Biot number, Bi, is:

$$Bi = \frac{hL_c}{k} < 0.1$$
 $L_c = \frac{\text{volume}}{\text{surface area}} = \frac{V}{A}$

where the characteristic length, L_c , is:

Convection Correlations

Math Model

The heat flow rate is:

$$Q=hA(T_s-T_\infty)$$

where *h* is the heat transfer coefficient, T_s is the surface temperature and T_{∞} is the fluid temperature. Correlations in terms of the Nusselt number are often used to determine *h*:

$$Nu = \frac{hL_c}{k}$$
 $h = \frac{kNu}{L_c}$

where L_c is a characteristic length associated with the fluid flow geometry.

External Forced Convection over a Sphere Math Model

Equation (7.48), p. 444, in [BLID11]

$$\overline{Nu}_D = 2 + \left(0.4 Re_D^{1/2} + 0.06 Re_D^{2/3}\right) Pr^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4}$$

where D is the diameter of the sphere and the Reynolds number, Re_D , is:.

$${\it Re}_{\it D}=rac{
ho u {\it D}}{\mu}=rac{u {\it D}}{
u}$$

Note that the fluid properties are evaluated at the fluid temperature, T_{∞} , except the viscosity, μ_s , evaluated at the surface temperature, T_s .

External Natural Convection over a Sphere

Math Model

Equation (9.35), page 585 in [BLID11]

$$\overline{Nu}_{D} = 2 + \frac{0.589 Ra_{D}^{1/4}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}}$$

where *D* is the diameter of the sphere and the the Rayleigh number, Ra_D , is:.

$${\it Ra}_{\it D}={\it Gr}{\it Pr}=rac{g
ho^2ceta D^3\left(T_s-T_\infty
ight)}{k\mu}=rac{geta D^3\left(T_s-T_\infty
ight)}{
ulpha}$$

Note that the fluid properties are evaluated at the film temperature, T_f :

$$T_f = \frac{T_s + T_\infty}{2}$$

Surface Radiation

Math Model

Radiation exchange between a surface and *large* surroundings The heat flow rate is (Equation (1.7), p. 10 in [BLID11]):

$$Q = \sigma \epsilon_s A_s (T_s^4 - T_{sur}^4)$$

where σ is the Stefan-Boltzmann constant, ϵ_s is the surface emissivity and A_s is the area of the surface. Note that the surface area, A_s , must be *much* smaller than the surrounding surface area, A_{sur} :

$$A_s \ll A_{sur}$$

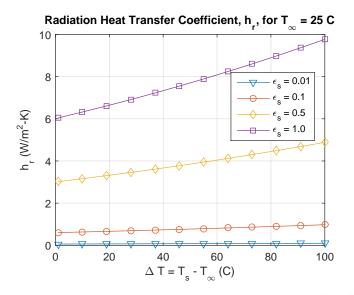
Note that the temperatures must be the absolute temperature, K or $^{\circ}R$

Radiation Heat Transfer Coefficient

Math Model

Define the radiation heat transfer coefficient, h_r (see Equation (1.9), page 10 in [BLID11]):

$$h_r = \epsilon \sigma (T_s + T_{sur}) (T_s^2 + T_{sur}^2)$$


Then,

$$Q = h_r A_s (T_s - T_{sur})$$

Note:

- *h_r* is temperature dependent
- ▶ *h_r* can be used to compare the radiation to the convection heat transfer from a surface, *h* (if *T_{sur}* and *T_∞* have similar values)

Range of Radiation Heat Transfer Coefficient

<ロト<団ト<巨ト<巨ト<巨ト 16/39

TNSolver Input File

- What do we need in the input file for the lumped mass heat transfer experiment?
- Transient convection problem, with surface radiation
- Lumped capacitance approximation, Bi < 0.1, so no conduction in the solid object</p>

Solution Parameters

TNSolver Input File

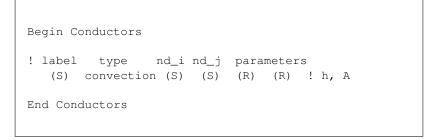
```
Begin Solution Parameters
title = Lumped Mass Heat Transfer Experiment
type = transient
begin time = (R)
end time = (R)
time step = (R)
number of time steps = (I)
End Solution Parameters
```

(R) is a single real number(I) is a single integer number

Nodes TNSolver Input File

Define nodes which have a volume

```
Begin Nodes
! label rho*c V
(S) (R) (R)
End Nodes
```


(S) is a single character string

Convection Conductor

TNSolver Input File

$$Q_{ij} = hA(T_s - T_\infty)$$

The heat transfer coefficient *h* is known.

External Forced Convection (EFC) Conductor

$$Q_{ij} = h A (T_s - T_\infty)$$

Heat transfer coefficient, h, is evaluated using the correlation for external forced convection from a sphere with diameter Dand fluid velocity of u.

```
Begin Conductors
! Ts Tinf
! label type nd_i nd_j parameters
  (S) EFCsphere (S) (S) (S) (R) (R) ! material, u, D
End Conductors
```

Note that Re, Nu and h are reported in the output file.

External Natural Convection (ENC) Conductor

Thermal Network Model

$$Q_{ij} = hA(T_s - T_\infty)$$

Heat transfer coefficient, h, is evaluated using the correlation for external natural convection from a sphere with diameter D.

```
Begin Conductors
! Ts Tinf
! label type nd_i nd_j parameters
(S) ENCsphere (S) (S) (S) (R) ! material, D
End Conductors
```

Note that Ra, Nu and h are reported in the output file.

Surface Radiation Conductor

TNSolver Input File

$$Q_{ij} = \sigma \epsilon A_s (T_s^4 - T_{env}^4)$$

 σ is the Stefan-Boltzmann constant and ϵ is the surface emissivity.

```
Begin Conductors
! label type nd_i nd_j parameters
  (S) surfrad (S) (S) (R) (R) ! emissivity, A
End Conductors
```

Note that h_r is reported in the output file.

Boundary Conditions

TNSolver Input File

Specify a fixed temperature boundary condition, T_b , to one or more nodes in the model.

```
Begin Boundary Conditions

! type Tb Node(s)

fixed_T (R) (S ...)

End Boundary Conditions
```

(S ...) one or more character strings

Initial Conditions

TNSolver Input File

Specify the initial temperatures, T_0 , to the nodes in the model.

```
Begin Initial Conditions
! T0 Node(s)
  (R) (S ...)
End Initial Conditions
```

Example Input File

TNSolver Input File

```
Begin Solution Parameters
 title = Lumped Capacitance Experiment - Object A
 type = transient
 begin time = 0.0
 end time = 341.5
 time step = 0.5
! number of time steps = 20
End Solution Parameters
Begin Nodes
 1 3925000.0 6.2892e-05 ! rho*c, V
End Nodes
Begin Conductors
 conv convection 1 Tinf 12.0 0.0076 ! h, A
! conv EFCsphere 1 Tinf air 13.13 0.04934 ! material, u, D
! conv ENCsphere 1 Tinf air 0.04934 ! material, D
 rad surfrad 1 Tinf 0.95 0.0076 ! emissivity, A
End Conductors
                                        イロト イポト イラト イラト
```

Example Input File (continued) TNSolver Input File

Begin Boundary Conditions fixed_T 25.0 Tinf End Boundary Conditions

Begin Initial Conditions 99.0 1 ! Ti, node End Initial Conditions

Verification using Analytical Solution

TNSolver Verification

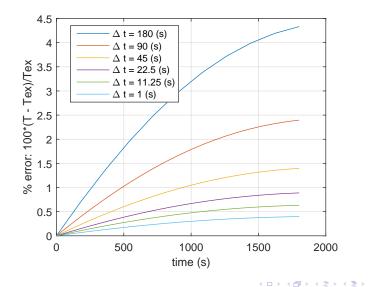
Backward Euler time integration is used in TNSolver. How does time step affect accuracy? Utilitize the analytical solution Equation (5.6), p. 282 in [BLID11]:

$$\frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA}{\rho cV}\right)t\right]$$

This is provided in the MATLAB function lumpedmass.m:

[T, Bi] = lumpedmass(time, rho, c, V, h, A, Ti, Tinf, k)

Example calculation using:


$$D = 0.04931 m, T_i = 100 C, T_{\infty} = 25 C$$

$$\rho = 7850 kg/m^3, c = 500 J/kg \cdot K$$

$$h = 25.0 W/m^2 \cdot K, k = 62.0 W/m \cdot K$$

Verification using Analytical Solution

TNSolver Verification

29/39

Experimental Data Processing

Experimental Data Analysis

Data file ForcedConvection.txt snippet:

time,air,water,specimen
0.5,25.0,100.25,64.5,
1.0,24.75,100.0,65.75,
1.5,24.75,100.0,67.25,
2.0,24.75,100.0,68.5,

MATLAB commands:

```
>> exp = importdata('ForcedConvection.txt',',',1);
>> exptime = exp.data(1:end,1);
>> airT = exp.data(1:end,2);
>> expT = exp.data(1:end,4);
>> save FC.mat exptime airT expT
```

Experiment Data Analysis with TNSolver

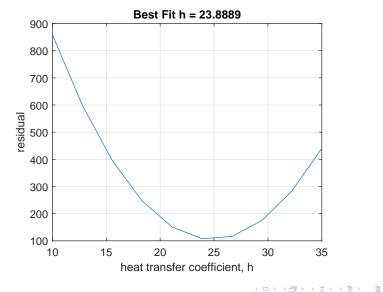
Experimental Data Analysis

Three MATLAB functions are provided for a least-squares analysis using TNSolver.

- Estimate convection heat transfer coefficient, *h*, for the natural convection data using ls_lumped_h.m
- 2. Estimate velocity, *u*, for the forced convection data using ls_lumped_vel.m
- 3. Estimate surface emissivity, ϵ , using ls_lumped_emiss.m

Estimate h

Experimental Data Analysis


Example for object A, natural convection input file ANC.inp

- 1. Set begin and end time to match experimental data range
 - Set time step using insight from verification problem
- 2. Set material properties and object geometries in input file
- 3. Set the boundary and initial conditions to match experiment
- 4. Use the convection conductor

```
>> load NC_A
>> h = linspace(10,35,10);
>> [besth] = ls_lumped_h('ANC', exptime, expT, h)
```

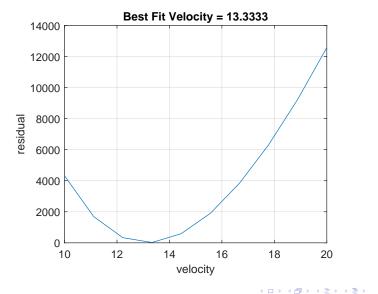
Estimate h Results and Plot

Experimental Data Analysis

33/39

Estimate Velocity

Experimental Data Analysis


Example for object A, forced convection input file AFC.inp

- 1. Set begin and end time to match experimental data range
 - Set time step using insight from verification problem
- 2. Set material properties and object geometries in input file
- 3. Set the boundary and initial conditions to match experiment
- 4. Use the EFCsphere convection conductor

```
>> load FC_A
>> u = linspace(10,20,10);
>> [bestvel] = ls_lumped_vel('AFC', exptime, expT, u)
```

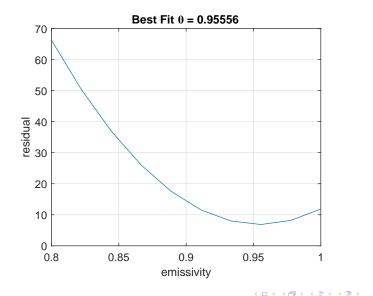
Estimate Velocity Results and Plot

Experimental Data Analysis

35/39

Estimate Emissivity

Experimental Data Analysis


Example for object A, forced convection input file AFC.inp

- 1. Set begin and end time to match experimental data range
 - Set time step using insight from verification problem
- 2. Set material properties and object geometries in input file
- 3. Set the boundary and initial conditions to match experiment
- 4. Use the EFCsphere convection conductor and the estimated velocity from previous

```
>> load FC_A
>> eps = linspace(.8,1,10);
>> [beste] = ls_lumped_emiss('AFC', exptime, expT, eps)
```

Estimate Emissivity Results and Plot

Experimental Data Analysis

Conclusion

- Math model for lumped capacitance method
- TNSolver input file described
- TNSolver thermal network model verification with analytical solution demonstrated
- Experimental data analysis

Questions?

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< =< =< =< =< =< =< =< =<

38/39

References I

[BLID11] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt.

Introduction to Heat Transfer.

John Wiley & Sons, New York, sixth edition, 2011.